Name	e of Student:Date:	
Stude	ent ID No Course/ClassBrand	ch
	Midterm Examination – 2014	
	STATISTICS (STAT-101)	
Time	e: 1 Hour	MM: 25
	Section-I	
Part	-I	
Answ	ver all the questions on the same question paper.	
State	whether the following statements are True or False. (5 mark	s, 1 Mark Each)
1.	The weights of supermodels are Categorical Data.	False
2.	Temperature of a cup of coffee is discrete variable.	False
3.	Standard Deviation of standard normal variate is zero.	False
4.	A discrete probability distribution assigns a probability to erandom variable.	each value of the True
5.	Mean and variance for Poisson distribution are equal.	True

Part-II (Multiple Choice Questions)

- 1. A statistical data consists of names or labels is called
 - a. Quantitative data
 - b. Categorical
 - c. Qualitative data
 - d. b and c both
- 2. A line graph that depicts cumulative frequencies is called a
 - a. Histogram
 - b. Ogive
 - c. Pie-chart
 - d. Scatter Diagram
- 3. The sum of deviations about the mean is always:
 - a. Zero
 - b. Range
 - c. Positive
 - d. Negative
- 4. The events A and B are mutually exclusive, if P(A)=0.7, P(B)=0.2 and $P(A \cap B) = 0.4$, then P(A or B) will be
 - a. 0.10
 - b. 0.9
 - c. 0.15
 - d. 0.41
- 5. Which of the following statements is/are true regarding the normal distribution curve?
 - a. it is symmetrical
 - b. it is bell-shaped
 - c. its mean, median and mode are located at the same point
 - d. all of the above statements are true

MCQ	1	2	3	4	5
Answers					

Section-II

SHORT ANSWER TYPE QUESTIONS

(10 marks, 2 Marks Each)

1. What is the difference between parameter and statistic?

Answer.

A numerical measurement describing some characteristic of a population is called parameter while a numerical measurement describing some characteristic of a sample is called statistic.

2. If the mean of a normal distribution is 85 and its standard deviation is 3.5, then find the z-score of the data value 90.25.

Solution:

$$z = \frac{90.25 - 85}{3.5} = 1.5$$

3. The mean of a sample contains 6 values is equal 5, The values are : 3,8,6,5,7, X . Find the missing value X.

Solution:

Mean =
$$\bar{X} = \frac{3+8+6+5+7+x}{6}$$

$$5 = \frac{29+x}{6}$$
; $30 = 29 + x$; $x = 1$

4. Calculate the relative frequency and cumulative frequency and percent frequency

Solution:

Degrees	Frequency	Relative Frequency	Percent Frequency	
None	2	0.08	8	
Bachelor	11	0.44	44	
Master	7	0.28	28	
Doctorate	5	0.20	20	
Total	25	1.00	100	

- 5. A person tosses a coin three times and records whether it comes up heads or tails.
 - a) What is the probability of tossing exactly two heads in three tosses?
 - b) What is the probability of tossing at least one head in three tosses?

Solution:

The set of all possible outcomes $= 8 = 2^3$

{HHH, TTT, HHT, TTH, HTH, THT, HTT, THH}

- a) $\frac{P(2 \text{ heads}) = 3/8 = .375}{P(2 \text{ heads}) = 3/8 = .375}$ binomial formula (Table) can be used also: $0.375 = \frac{3!}{(3-2)!2!} * 0.5^2 * 0.5^1$
- b) P(at least 1 head) = 1 P(no Heads) = 7/8 = .875 binomial formula (Table) can be used also

P(no Heads)=
$$\frac{3!}{(3-0)!0!} * 0.5^0 * 0.5^3 = 0.125$$

P(at least 1 head) = 1-0.125 = 0.875

Section-III

Attempt any one of the following Essay Type Questions

(5 Marks)

Q 2. Consider the following three data sets A, B and C.

$$A = \{9,10,11,7,13\}$$

$$B = \{10,10,10,10,10\}$$
 and

$$C = \{1,1,10,19,19\}$$

Find

- a. Calculate the mean of each data set.
- b. Calculate the standard deviation of each data set.

Solution:

a. mean of Data set
$$A = (9+10+11+7+13)/5 = 10$$

mean of Data set
$$B = (10+10+10+10+10)/5 = 10$$

mean of Data set
$$C = (1+1+10+19+19)/5 = 10$$

b.

Standard Deviation Data set A

=
$$\sqrt{(9-10)^2+(10-10)^2+(11-10)^2+(7-10)^2+(13-10)^2}$$
 /5] = 2

Standard Deviation Data set B

=
$$\sqrt{((10-10)^2+(10-10)^2+(10-10)^2+(10-10)^2+(10-10)^2)/5}$$
] = 0

Standard Deviation Data set C

=
$$\sqrt{[((1-10)^2+(1-10)^2+(10-10)^2+(19-10)^2+(19-10)^2)/5}$$
] = 8.05

Or

Q1'. Find the mean and variance of the number of points obtained in a throw of a fair die.

Solution:

Let x denote the number of points obtained in a throw. Then, probability distribution of x is –

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6

Mean:
$$\mu = E[X] = \sum_{x} x \cdot P(x) = I\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{21}{6} = 3.5$$

Variance:
$$\sigma^2 = \text{Var}[X] = \sum_{x} (x - \mu)^2 \cdot P(x) = (1 - 3.5)^2 \left(\frac{1}{6}\right) + (2 - 3.5)^2 \left(\frac{1}{6}\right) + ... + (6 - 3.5)^2 \left(\frac{1}{6}\right) = 2.9167$$

OR

$$E[X^{2}] = \sum_{x} x^{2} \cdot P(x) = 1^{2} \left(\frac{1}{6}\right) + 2^{2} \left(\frac{1}{6}\right) + 3^{2} \left(\frac{1}{6}\right) + 4^{2} \left(\frac{1}{6}\right) + 5^{2} \left(\frac{1}{6}\right) + 6^{2} \left(\frac{1}{6}\right) = \frac{91}{6} = 15.1667$$

Variance: $\sigma^2 = \text{Var}[X] = \text{E}[X^2] - \text{E}[X]^2 = 15.1667 - 3.5^2 = 15.1667 - 12.25 = 2.9167$